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Abstract
The temperature and pressure dependence of the glass-transition process is
discussed on the basis of the molecular Adam–Gibbs equation for the relaxation
time. An equation for measuring the temperature and pressure dependence of
the Adam–Gibbs size of the cooperative rearranging region is suggested. The
apparent activation energy and the apparent relaxation volume by this equation
are presented as the product of the activation energy and the activation volume
per basic molecular kinetic unit respectively with the size of the cooperativeunit
to the second power. In this way, for the first time, an equation for measuring the
activation volume of a basic molecular kinetic unit involved in the cooperative
molecular dynamics is obtained. The isobaric and the isothermal activation
volume of a basic molecular species (BMS) measured by this equation correlate
with the molar volume of the liquid. From the experimental results it follows
that the size of the cooperatively rearranging region at isothermal conditions
increases with pressure until at the glass-transition pressures it reaches an
apparent limit. On the basis of the activation volume measured per BMS, a
method for evaluating their volume in liquids and their number in molecules
or in repeated units in polymers is suggested. By this method, for the first
time, from a relaxation experiment, the basic kinetic units in several molecular
glass-forming liquids are found to be close to the fragments of the monomer
segments or molecules known in thermodynamics as Wunderlich’s beads.

1. Introduction

One of the most successful theories of the glass-transition process was suggested by Adam and
Gibbs [1]. At the macroscopic level this theory is supported by experiment in all cases when
the configuration entropy has been measured [2–6]. At the molecular level the temperature
dependence of the relaxation time τ is given by

τ = τ0 exp

(
zU

RT

)
(1)
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where U is a potential barrier per monomer segment hindering the cooperative rearrangement,
τ0 is a frequency factor, R is the gas constant, T is the temperature and z is the size of the
cooperative rearranging region (CRR). Adam and Gibbs define the size of CRR as the number
of monomer segments, which are rearranging cooperatively.

In the absence of a cooperative rearrangement, z = 1, equation (1) is reduced to the
Arrhenius equation. The Arrhenius activation energy is defined by

U = R

(
d ln τ

d1/T

)
p

. (2)

In this case U is identified with the potential barrier formed by the interaction of the molecule
with its neighbours [7, 8].

In glass-forming liquids the temperature dependence of the relaxation time is described
by the Vogel–Taman–Fulcher (VTF) equation

τ (T ) = A exp

[
B

T − T∞

]
(3)

where A, B and T∞ are material parameters. The VTF equation gives

R

(
d ln τ

d1/T

)
p

= RB

(
T

T − T∞

)2

= Uapp. (4)

As follows from equation (4), the apparent activation energy Uapp is strongly temperature
dependent and close to the glass-transition temperature Tg exceeds by a large margin the
molecular heat of vaporization of the material [8–11]. This fact is the main argument for the
glass-transition process to be regarded as cooperative [9–11].

From the pressure dependence of the relaxation time the relaxation volume V ∗ is defined
by

V ∗ = RT

(
d ln τ

d p

)
T

(5)

where p is pressure.
It is interesting to note that the definition of V ∗ is common for the Arrhenius approach [12–

19], transition state theory [12, 20, 21] and the approach based on the terminology of
equilibrium thermodynamics [23–26]. Several controversial molecular interpretations of V ∗
exist. Hirai and Eyring [20, 21] assumed that V ∗ is the molar volume of a hole in the quasi-
lattice (or hole) model of liquids. McDuffie and Kelly [27] also used this interpretation.
Bueche [28], having in mind a distribution of hole sizes, interprets V ∗ as a critical hole size,
or a volume just large enough that the hole can accommodate the volume of a molecule. In
many cases V ∗ is interpreted on the basis of the transition state theory as the difference in
the molar volume of activated and inactivated molecules [12, 17, 29–33]. In some cases V ∗
is identified with the volume of the molecule or monomer segments involved in relaxation or
flow processes [22, 23, 25, 34, 35]. In other cases V ∗ is not interpreted but only compared with
other measurements [14–16, 24, 36–38]. As the molecular approach to V ∗ is of questionable
validity, sometimes is it called the apparent relaxation volume [19, 22, 63], or it is assumed
that V ∗ has only a phenomenological significance [39, 44, 47]. In the investigations during the
last few years, some new equations for τ (p) as well as for η(p) on the basis of the free-volume
conception have been given, but new ideas for the molecular interpretation of V ∗ were not
suggested [38, 40–47]. Attention will be drawn here to the fact that information has been
obtained which suggests a focus on activated dynamics rather than on free volume [48]. When
V ∗ is measured at temperature close to Tg the obtained values are several times larger than the
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volume of the molecule or the monomer segment, which fact is interpreted as evidence for the
cooperativity of the process [16, 23, 33, 35].

Recently the Adam–Gibbs theory was extended at its molecular level [49–53]. It was
assumed that the basic molecule species (BMSs) in glass-forming liquids are not molecules
or monomer segments but fragments of them, called by Wunderlich ‘beads’ [54]. Wunderlich
defined ‘beads’ on the basis of the quasi-lattice (or hole) theory of liquids [20, 21] as ‘the
smallest molecular units whose movement may change the hole equilibrium’. Wunderlich
observed that the heat capacity jump at the glass transition temperature, �cp(Tg) = cpl(Tg)−
cps(Tg), where cpl and cps are respectively the heat capacity of the liquid and the crystal or the
glass, varies within narrow limits around an average value if it is calculated per mole of bead
and defines ‘the rule of constant �cp(Tg) per bead’. Later Chang et al [55] found a similar
rule for the configuration entropy. It was found that the Adam–Gibbs size of the cooperatively
rearranging region may be expressed as z(Tg) = �cp(Tg)/Sc(Tg) [50]. On the basis of
the ‘universal’ values for �cp(Tg) = 11.3 J/mol bead K and Sc(Tg) = 2.9 J/mol bead K
it was predicted that the ‘universal’ value of z(Tg) = 3.9 beads. As the values of z(Tg) in
low molecular weight liquids, polymers and inorganic glasses have been obtained to be of
the order of magnitude of the ‘universal’ value, it was accepted that the beads are the basic
molecular kinetic units in glass-forming liquids [50]. The beads are usually regarded as the
basic molecular units when the thermodynamic phenomena are discussed [54–59],but attention
should be drawn to the fact that the possibility of their being the basic molecular units in kinetic
phenomena has also been assumed [55, 60–63].

In the case of saturated carbon backbone polymers with small side-chain groups the
number of beads, n, in the chain repeating unit can be defined as the number of main-chain
carbon atoms [54–59], but in general the empirical rules for counting the beads in small organic
and inorganic molecules are unfortunately rather ambiguous [55–63]. Hence it is of principal
interest for the basic kinetic units to be identified on the basis of measuring their physical
properties instead of using semi-empirical rules.

The aim of this paper is to discuss Uapp and V ∗ from the point of view of the Adam–
Gibbs theory. Equations expressing Uapp and V ∗ by means of z are suggested. The equation
obtained for V ∗ gives the possibility for the activation volume of a BMS to be measured. By
measuring this activation volume a method for identification of the BMS in glass-forming
liquids is described. The pressure dependence of z as a component of both Uapp and V ∗ is also
illustrated by the experimental results.

2. Theoretical treatments

From the point of view of the Adam–Gibbs theory the activation energy that governs relaxation
is the activation energy of the cooperative unit zU , which, as follows from equation (1), can
be measured by

zU = RT ln

(
τ (T )

τ0

)
. (6)

If τ (T ) in this equation is replaced by the VTF equation and assuming A = τ0 we obtain

zU = RB
T

T − T∞
(7)

from which it follows that

U = RB (8)
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and

z(T ) = T

T − T∞
. (9)

Equation (8) is used by a variety of authors [13, 64, 65, 73], and the VTF parameter B is
interpreted as an activation parameter by many scientists. The right-hand side of equation (9)
is found in a variety of articles [66, 67, 78] as well as in the case when Uapp, equation (4), is
discussed, but it is not recognized as a separate physical quantity. Miller [64, 65] regards this
equation as the size of the CRR but interprets it as the number of monomer segments according
to the definition by Adam and Gibbs. Several authors [32, 33, 68] use Miller’s interpretation.
Equation (9) has been obtained by the present author but with the interpretation that it gives
the number of Wunderlich ‘beads’ [49, 50]. This interpretation seems to be supported by the
work of Xia and Wolynes [69], who found a correlation between the strength parameter and
the heat capacity jump per mole of beads at Tg . In general we regard the beads as occupied
lattice sites in the quasi-lattice model of liquids [49]. Very recently equation (9) has also been
obtained by Johari [70].

The activation energy of the CRR is closely related to the glass transition temperature as
follows from equation (6), z(Tg)U/RTg = ln τ (Tg)/τ0. It was shown that log τ (Tg)/τ0 = C1,
where C1 is the constant in the Williams–Landel–Ferry equation [50]. As C1 is a ‘universal’
constant with the value ≈16 [8, 71], it follows that the Adam–Gibbs factor at Tg is also
a ‘universal’ z(Tg)U/RTg ≈ 37 and a linear dependence between z(Tg)U and Tg is
observed [50, 52].

From equations (4), (8) and (9) we obtain

Uapp = Uz2(T ). (10)

Equation (10) gives the explicit relation between Uapp and the size of the CRR. To summarize,
in the cooperative molecular dynamics three activation energies are used, namely activation
energy per BMS U , activation energy of the cooperative unit zU and apparent activation energy
z2U .

The VTF equation (3) is often applied when the pressure dependence of
the relaxation times is investigated but in this case B and T∞ appear pressure
dependent [15, 16, 31, 38, 42, 68, 72, 73]. As T∞ is pressure dependent, as follows from
equation (9), z will be also pressure dependent.

Taking z and U in the Adam–Gibbs equation (1) as pressure dependent and using this
equation and equations (5), (8) and (9) we obtain

V ∗ = vba(T, p)z2(T, p) (11)

where

vba =
{

dU

d p
[T − T∞(p)] +

dT∞
d p

U(p)

}
T −1, (12)

where vba has the dimension of volume per BMS. In comparing equations (10) and (11) a
close correlation is observed, as both Uapp and V ∗ depend on the size of the CRR to the second
power and a quantity per basic kinetic molecular unit. On the other hand, from equations (10)
and (11) it follows that the interpretation of Uapp and V ∗, respectively, as the activation energy
and activation volume of the cooperative unit [10, 11, 16, 22, 23, 33, 35, 68] is misleading,
since both depend on z to the second power.

The volume given by equation (12) on the basis of the transition rate theory should be
interpreted as the difference in volumes of activated and inactivated states of a BMS or as an
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Table 1. VTF parameters of polyisoprenes. NR—natural rubber, PI—polyisoprenes.

Substance Mode Tg (K) log A (s) B (K) T∞ (K) Reference

NR α 201 −15, 81 2067 151 [73]
PI 1200 α 191 −13, 9 1529 153 [19]
PI 10600 α 204 −14 1543 164 [22]
PI 1200 n −10, 84 1487 149 [19]
PI 10600 n −9 1462 162 [22]

activation volume. Hence, the volume of a BMS in the liquid is the sum of an inactivated
hard-core volume vbu and an activation one vba

vb = vbu + vba . (13)

vb can be expected to be close to the volume of a BMS measured by ordinary dilatometric
experiments. It should be mentioned that the molar volume of a molecule or monomer segment
vm is the sum of the volumes of the BMSs or vm = nvb, where n is the number of ‘beads’ [54].

3. Application of theory to experiments

The application of equation (12) to experimental data needs fitting for the pressure dependence
of VTF parameters by analytical relations. As the pressure experiments are time consuming
and the experimentally available frequency range is normally limited, the pressure dependence
of relaxation times is usually investigated at one or several temperatures and for B(p) and for
T∞(p) a linear dependence is assumed; hence, at present, a few experimental investigations
may be used for measuring vba . Furthermore, we shall discuss mainly the dielectric
experimental results of Dalal and Phillips [73] for cis-polyisoprene (natural rubber (NR)), since
Dalal and Phillips obtained analytical expressions for U(p), T∞(p) and Tg(p). Moreover, the
VTF parameters at atmospheric pressure for this material correlated very well with the same
parameters of other investigators [74–77] for polyisoprene. This is an advantage, as it is
known that VTF parameters depend on the temperature range of investigation [13, 78–82] and
are meaningful from the point of view of the Adams–Gibbs theory when τ (T ) is measured
close to Tg [5, 6]. A further advantage is that their results can be compared with the recently
published dielectric investigation for fractions of cis-polyisoprene with different molecular
weights [19, 22]. In this way, some information on the influence of the degree of polymerization
on relaxation quantities, including the activation relaxation volume per BMS, can be obtained.
The last reason is that in cis-polyisoprenes an additional one to the primary α relaxation,
the so-called n-mode process, is observed. The n-mode relaxation is correlated with the
viscosity [76, 82] and, hence, additional information may be gained. The VTF parameters at
atmospheric pressure for the polyisoprene materials are given in table 1. The numbers added
to the abbreviations of polyisoprenes indicate the number-average molecular weights [19, 22].

Dalal and Phillips [73] obtained the following equations: U(p) = 17.26+1.57×10−2 P −
9.9 × 10−6 P2, where U is in kJ/mol and P in MPa, and T∞(p) = 150.5 + 13.19 × 10−2 P −
3.91 × 10−5 P2, where T is in K and P in MPa. The behaviour of T∞ is in agreement with the
theoretical prediction [83].
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Figure 1. The temperature dependence of Uapp is compared with the temperature dependence of
the size of the cooperative unit z to the second power for NR and polyisoprenes. The activation
energy per BMS, U , is also plotted. Notation is given in the figure and the results are for atmospheric
pressure.

3.1. Isobaric analysis

In figure 1 the activation energies per BMS U, z2 and the apparent activation energies Uapp of
NR and polyisoprenes as functions of the temperature difference T –Tg are plotted. The results
are for atmospheric pressure and the glass-transition temperatures are for the corresponding
polymers. The activation energies per BMS of the dielectric α relaxation in polyisoprenes
practically coincide and are smaller than that of NR while the CRRs for polyisoprenes are a
little larger than that of NR. In all three polymers a close correlation between z2 and Uapp is
observed, in accordance with equation (10).

In figure 2 the temperature dependence of the apparent relaxation volumes for NR and
polyisoprenes is plotted. The apparent relaxation volume of NR is extrapolated by the Dalal–
Phillips equation for T∞(p) and B(p) to the temperature range where the apparent relaxation
volumes of polyisoprenes are measured. As may be seen from figure 2, the apparent relaxation
volumes scaled to the temperature difference from the respective Tg are similar to these obtained
for α relaxation and n-mode by Floudas et al [19] for the fractions of polyisoprenes. In figure 2
the molecular volume per monomer unit is also given [84]. As may be seen from figure 2,
close to Tg the apparent relaxation volume is much higher than the molecular volume, but it
decreases proportionally to z2 in accordance with equation (11), and about 80 ◦C above the
corresponding Tg it becomes smaller than the monomer volume. In figure 2 the apparent
relaxation volumes for the n-mode of polyisoprenes are also plotted. The V ∗ for the n-mode
in polyisoprenes are a little smaller than that for α relaxation.

In figure 3 the activation relaxation volumes per BMS vba of the three liquids are compared
with the volume per mole of monomer units. As can be seen from figure 3, vba is approximately
five times smaller than the monomer volume. For all the substances the vba values scaled to
the corresponding Tg are very close. As VTF temperatures for the n-modes are lower than
those for α relaxation, the sizes of the CRRs for the n-mode at a given temperature are a little
smaller than those for the α relaxation. As a result, the absolute difference in vba of the α

relaxation and the n-mode is smaller than in the corresponding apparent relaxation volumes.
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Figure 2. The temperature dependence of the apparent relaxation volume V ∗ of NR and
polyisoprenes is compared with the size of the CRR to the second power, z2, of NR. The dashed
curve is an extrapolation of the apparent relaxation volume of NR by the equations in the text to
the temperature range of investigation of polyisoprenes. For polyisoprenes the apparent relaxation
volumes for the α segmental V ∗ and for the n-mode (V ∗

n ) are plotted. The temperature dependence
of the monomer volume vm of NR is also given. The results are for ambient pressure.

Figure 3. The activation relaxation volume per BMS vba , and the monomer volume vm of NR as a
function of the temperature difference from Tg . For polyisoprenes 1200 and 10600 the activation
relaxation volumes per BMS for the α segmental vba and for the n-mode vban as functions of the
temperature distance from the respective Tg are plotted. The results are for atmospheric pressure.

This is the reason that for PI 1200 volumes vba and vvan are very close and in figure 3 their
points coincide. While V ∗ decreases rapidly with increasing temperature, vba increases with
increasing temperature in coordination with the molar volume (figure 3).

From the results in figure 3 we may estimate the number of BMSs in the monomer segment.
As the activation relaxation volume vba is measured, an estimation of the hard-core volume
vbu of the BMS needs to be assumed to apply equation (13). One possibility is to accept the
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Figure 4. The isothermal size of the cooperative unit z of NR as a function of pressure at the
temperature marked on the curves.

concept of Hirai and Eyring and of Bueche that the relaxation volume is equal to the volume
of one hole, but it will be emphasized that vba is taken in our case, instead of the apparent
relaxation volume, which they used. On the other hand, Bueche obviously assumed that the
volume of a hole is equal to the volume of a BMS. The same postulate is also used in several
other variants of the quasi-lattice theory of liquids [85, 86]. According to this concept, the
volume of the BMS will be twice the measured activation relaxation volume, or vb = 2vba . The
average vba in the investigated temperature range of NR in figure 3 is 15.26 cm3/mol BMS and
within the same temperature range the volume of the monomer unit is vm = 72.93 cm3/mol;
with these values we obtain n = 2.4 BMS in a monomer unit. For the α-relaxation of PI
1200 and PI 10600 with the corresponding vba = 13.12 and 16.67 cm3/mol BMS at respective
temperatures we obtain n = 2.9 and 2.3. For the n-mode for both polyisoprenes n = 2.93
BMSs in a monomer segment is obtained. The numbers obtained are close to the empirically
defined number of beads in NR [54], n = 3. Another possibility exists, namely to choose the
van der Waals volume as a hard-core volume of the BMS [51]. The van der Waals volume of
a monomer segment of polyisoprenes is 47.6 cm 3/mol [87]. If we take the number of beads
to be three we obtain vbu = 15.29 cm3/mol beads; this volume practically coincides with the
activation relaxation volume per BMS in figure 3, and negligible differences in n on this basis
from previous estimations are obtained.

3.2. Isothermal analysis

In figure 4 the pressure dependences of the size of CRRs of the marked temperatures are
plotted. As can be seen from the figure, z(p)T increases with the pressure and at the level of
glass-transition pressures it reaches a limit independent of temperature.

Dalal and Phillips [73] found that the glass-transition temperature Tg(p) of NR increases
with the pressure according to the equation Tg(p) = 201 + 1, 642 × 10−1 P + 2, 3 × 10−5 P2.
In figure 5 the activation energy per BMS, U , the activation energy of the cooperative unit, zU ,
and the apparent activation energy, z2U , are plotted as functions of Tg(p). As U increases with
pressure from 17.26 kJ /mol BMS at atmospheric pressure to 21.5 kJ /mol BMS at 345 MPa
and the z[Tg(p)] are practically the same, the activation energy of the cooperative unit and
the apparent activation energies increased with the pressure proportionally to U . Note that
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Figure 5. The activation energy per BMS, U , the activation energy of the cooperative unit, zU , and
the apparent activation energy, Uapp , of NR as functions of Tg(p). The ‘universal’ Adam–Gibbs
factor is also given.

the Adam–Gibbs factor at Tg, z(Tg)U/RTg, which is a ‘universal’ constant for glass-forming
liquids at atmospheric pressure, appears, according to the investigation of Dalal and Phillips,
to be pressure independent. The fragility of the liquids is related to the scaling to the glass
transition temperature [88, 89]. Thus, from the molecular point of view [50], the fragility
index m = C1z(Tg), where C1 is the constant in the Williams–Landel–Ferry equation. Since
z[Tg(p)] and C1(p) = 17.8 [73] are independent of pressure, it follows that in polyisoprene
fragility is pressure independent within the investigated pressure range. Such independence
of fragility within the experimental errors is observed in other van der Waals liquids, namely
dibutyl-phthalate [42], orthoterphenyl [43] and epoxy resins [46]. The relaxation behaviour
of hydrogen-bonded liquids is more complicated and will be discussed elsewhere.

In figure 6 the isothermal activation relaxation volume per BMS vba is plotted as a function
of pressure at temperature 243 K, where the largest number of experimental points in the
investigated frequency and pressure range are available. In figure 6 the dependence of the
molecular volume vm at 243 K is also given [84] for comparison. As can be seen from figure 6,
a correlation between the activation relaxation volume per BMS and the molar volume is
observed. The results from the figure can be used for estimation of the number of BMSs in a
monomer unit. Assuming vb = 2vba at temperature 243 K, we obtain n = 2.5 at an average
pressure of 86 MPa. This number is in agreement with the results estimated at atmospheric
pressure.

In figure 7 the activation relaxation volumes per BMS vba , the activation relaxation volume
per cooperative unit zvba and the apparent relaxation volume z2vba are plotted against the glass-
transition temperatures enhanced by pressure. Comparing figures 5 and 7, it may be observed
that the activation energies increased and the relaxation volumes decreased with increasing
glass-transition temperature Tg(p).

As equations (12) and (13) give the possibility for the BMS to be identified, it is useful that
they should be applied to other molecular substances. From the literature experimental results
available the tabulated values for the relaxation times of poly(methyl acrylate) (PMA) [34],
poly(ethyl acrylate) (PEA) [32] and o-terphenyl (OTP) [26] were found to be suitable. The
VTF parameters T∞ and B were fitted by the second-order polynomial a + bP + cP2 following
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Figure 6. The isothermal activation relaxation volume of the BMS vba and the monomer volume
vm of NR as functions of pressure at 243 K.

Figure 7. The activation relaxation volume per BMS vba , the activation relaxation volume of the
CRR zvba and the apparent relaxation volume V ∗ of NR plotted against Tg(p).

the procedure of Dalal and Phillips for polyisoprene. The parameters a, b and c as well as log A
for these substances are listed in table 2. The activation volume per BMS for these substances at
atmospheric pressure increases with the temperature, as observed for polyisoprenes (figure 3).
The investigated temperature range and the values of vba in these ranges are given in table 3. In
table 3 the average values of the monomer volumes of PMA and PEA [87] and the molecular
volume of OTP are included as well [90]. The numbers of BMSs in a monomer segment in
PMA and PEA and in a molecule of OTP estimated by means of vba and assuming vb = 2vba

are given in the last column of table 3. For PMA and PEM the numbers of BMSs obtained
are 3.7 and 4.6, values very close to the estimated number of beads, corresponding to four
and five [57, 59]. For OTP the estimated number of BMSs is 6.5. OTP is constituted from
three phenyl groups, each connected by a single bond to the molecule. From investigations by
Wunderlich and Jones [56] a similar construction is observed in polystyrene. The number of
beads estimated on the basis of the rule of the constant �cp(Tg) per mole of beads in polystyrene
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Table 2. Results obtained for the VTF parameters as a function of pressure fitted by the polynomial
a + bp + cp2.

T∞ (K) B (K)

Substance a b c a b c log A (s)

PMA 221 1.27 × 10−1 −3.59 × 10−5 1872 1.573 −3.47 × × 10−4 −13.52
PEA 210.7 5.7 × 10−2 3.05 × 10−4 1445 3.517 −1.05 × 10−2 −12.47
OTF 201.8 1.32 × 10−1 1.01 × 10−3 1699.5 5.025 −3.46 × 10−1 −15.55

Table 3. Molar volumes and the number of BMSs in the monomer segments of PMA and PEA as
well as in the molecule of OTP.

Substance �T (K) V (cm3) vba (cm3) n

PMA 280–307 73.1 9.96 3.7
PEA 265–290 87.9 9.47 4.6
OTP 257–272 207.8 15.92 6.5

by Wunderlich and Jones is n = 3, or the phenyl group is estimated as one bead. On this basis
Chang and Bestul [3] estimated the number of beads in OTP, n = 3. Becker [57] on the basis
of several semi-empirical equations estimated the number of beads in polystyrene, n = 4,
or the phenyl group is estimated as two beads. It is interesting that in polystyrene restricted
rotation and rotation vibrations of the phenyl group have been assumed [7]. On the other hand
Privalko [58] assigned n = 3 to the phenyl group and correspondingly n = 9 to OTP. The
number of beads obtained on the basis of the measured vba in OTP, n = 6.5, is close to the
n = 2 estimated by Becker for the phenyl group connected with a single bond to the molecule.

The results obtained for the number of BMSs in the monomer segment or molecule of the
investigated molecular liquids are close to the estimated number of ‘beads’ for this substance.
Hence, the method described for measuring the number of BMSs in molecular liquids is
promising, as so far only semi-empirical methods for this estimation are known.

4. Conclusion

The equation for the temperature dependence of the size of the Adam–Gibbs cooperatively
rearranging region has been extended to describe the effect of pressure as well. By this equation
the apparent activation energy Uapp and the apparent relaxation volume V ∗ are presented as
products of two components. The first one is, respectively, the activation energy and the
activation relaxation volume per BMS, while the second one in both cases is the size of the
cooperative unit to the second power. By this representation an equation for the activation
relaxation volume per BMS in the cooperative molecular dynamic of any supercooled liquid
is obtained. The isobaric and isothermal activation relaxation volumes per basic molecular
kinetic unit measured by this equation increase in correspondence with the temperature and
decrease with pressure in co-ordination with the volume of the liquid. The estimated activation
relaxation volumes per BMS in polyisoprenes are very similar, with a negligible difference in
the degree of polymerization.

The volume of a BMS is assumed to be the sum of the measured activation relaxation
volume and a hard-core one. Using the hypothesis that the two volumes are equal, the number
of basic molecular kinetic units in a monomer segment or in a molecule of several molecular
liquids has been estimated, and the number obtained has been found to be close to the number
of empirically postulated Wunderlich beads. The obtained results also support the suggested
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molecular interpretation of the apparent relaxation volume V ∗.
The size of the CRR of NR in isothermal measurements has been observed to increase with

pressure, reaching a top temperature-independent limit at the glass-transition pressure. As a
result the fragility index, which is closely related to the size of the cooperatively rearranging
region, is also pressure independent within the pressure range investigated by Dalal and Phillips.

The ‘universal’ value of the Adam–Gibbs factor at Tg has been observed to be pressure
independent.
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